The order of terms matters even when they commute
Jump to navigation
Jump to search
When writing an expression that consists of several terms, the conventions regarding their order appear arbitrary.
Multiplication
It is usual to write:
- \(xy\) and \(yx\) in either order;
- \(5t\) but not \(t5\) (to avoid confusion with \(t_5\) or \(t^5\));
- \(x\sqrt{2}\) but not \(\sqrt{2}x\) (to avoid confusion with \(\sqrt{2x}\)). (See Something on the right of a radical)
- \(\sqrt{2}\sin x\) but not \(\sin x \sqrt{2}\) (to avoid confusion with \(\sin \left(x\sqrt{2}\right)\)).
Addition
People sometimes rearrange a sum to avoid a leading unary minus, even when this contradicts the convention of writing terms in decreasing order of degree:
\[ 1 - x \]
instead of
\[ -x + 1 \]