Chaining operators and relations
Jump to navigation
Jump to search
When you have several terms with operators in between, some kind of associativity is normally implied, so that the expression can be evaluated as a sequence of binary operations:
\[ a \cdot b \cdot c = (a \cdot b) \cdot c \]
That isn't usually the case when terms are joined with relation symbols[1][2]:
Let \(a=1\), \(b=2\), \(c=3\).
\( (a \lt b) \lt c = \text{True} \lt c \)
Doesn't make sense!
It doesn't make sense to evaluate this as a sequence of binary operations. Instead, a chain of \(n\) relations could be interpreted as a set of \(n\) statements:
\[ a \lt b \lt c \iff (a \lt b) \wedge (b \lt c) \]