Missing multiplication symbol
From Why start at x, y, z
It's common to omit a multiplication symbol:
\(ab = a \times b\)
But sometimes it's not as clear:
Does \( a(b+1) = a \times (b+1)\), or is \(a\) a function?
When writing a division on one line, does an implied multiplication bind more tightly than an explicit one?[1]
Is \(a/bc\) equivalent to \(\frac{a}{bc}\) or \(\frac{a}{b}c\)?
There seems to be an unwritten rule "juxtaposition is stickier".
But that might not apply when there are numbers involved: almost everyone would interpret \(2/3x\) as \(\frac{2}{3}x\) instead of \(\frac{2}{3x}\)
The "juxtaposition is stickier" rule only seems to break ties, not override the normal order of operations:
\[ ab^2 = a \times (b^2) \]